RNN模型
具体参看rnn_model.py的实现。
大年夜致构造如下:
练习与验证
运行 python run_rnn.py train,可以开端练习。
若之进步行过练习,请把tensorboard/textrnn删除,避免TensorBoard多次练习结不雅重叠。
- Configuring RNN model...
- Configuring TensorBoard and Saver...
- Loading training and validation data...
- Time usage: 0:00:14
- Training and evaluating...
- Epoch: 1
- Iter: 0, Train Loss: 2.3, Train Acc: 8.59%, Val Loss: 2.3, Val Acc: 11.96%, Time: 0:00:08 *
- Iter: 100, Train Loss: 0.95, Train Acc: 64.06%, Val Loss: 1.3, Val Acc: 53.06%, Time: 0:01:15 *
- Iter: 200, Train Loss: 0.61, Train Acc: 79.69%, Val Loss: 0.94, Val Acc: 69.88%, Time: 0:02:22 *
- Iter: 300, Train Loss: 0.49, Train Acc: 85.16%, Val Loss: 0.63, Val Acc: 81.44%, Time: 0:03:29 *
- Epoch: 2
- Iter: 400, Train Loss: 0.23, Train Acc: 92.97%, Val Loss: 0.6, Val Acc: 82.86%, Time: 0:04:36 *
- Iter: 500, Train Loss: 0.27, Train Acc: 92.97%, Val Loss: 0.47, Val Acc: 86.72%, Time: 0:05:43 *
- Iter: 600, Train Loss: 0.13, Train Acc: 98.44%, Val Loss: 0.43, Val Acc: 87.46%, Time: 0:06:50 *
- Iter: 700, Train Loss: 0.24, Train Acc: 91.41%, Val Loss: 0.46, Val Acc: 87.12%, Time: 0:07:57
- Epoch: 3
- Iter: 800, Train Loss: 0.11, Train Acc: 96.09%, Val Loss: 0.49, Val Acc: 87.02%, Time: 0:09:03
- Iter: 900, Train Loss: 0.15, Train Acc: 96.09%, Val Loss: 0.55, Val Acc: 85.86%, Time: 0:10:10
- Iter: 1000, Train Loss: 0.17, Train Acc: 96.09%, Val Loss: 0.43, Val Acc: 89.44%,
推荐阅读
Tech Neo技巧沙龙 | 11月25号,九州云/ZStack与您一路商量云时代收集界线治理实践 我们在客岁的夏天,也就是微软推送Windows 10周年更新的时刻写过一篇关于若何禁用Windows 10更新的文┞仿>>>详细阅读
本文标题:CNN与RNN对中文文本进行分类--基于TENSORFLOW实现
地址:http://www.17bianji.com/lsqh/39190.html
1/2 1