- btc_ml.plot_graphviz_tree()
- RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
- max_depth=None, max_features='sqrt', max_leaf_nodes=None,
- min_impurity_split=1e-07, min_samples_leaf=1,
- min_samples_split=2, min_weight_fraction_leaf=0.0,
- n_estimators=400, n_jobs=1, oob_score=False, random_state=None,
- verbose=0, warm_start=False)
下面应用btc_ml对练习集进行交叉精确率评分:
- btc_ml.cross_val_accuracy_score()
- RandomForestClassifier score mean: 0.8151620867325032
- array([ 0.781 , 0.8102, 0.7883, 0.8382, 0.8162, 0.8162, 0.8235,
- 0.8456, 0.7794, 0.8529])
下面应用btc_ml对练习集进行交叉roc_auc评分:
- btc_train = pd.concat([btc_train0, btc_train1, btc_train2])
- btc_train.index = np.arange(0, btc_train.shape[0])
- dummies_one_week = pd.get_dummies(btc_train['one_date_week'], prefix='one_date_week')
- dummies_two_week = pd.get_dummies(btc_train['two_date_week'], prefix='two_date_week')
- dummies_today_week = pd.get_dummies(btc_train['today_date_week'], prefix='today_date_week')
- btc_train.drop(['one_date_week', 'two_date_week', 'today_date_week'], inplace=True, axis=1)
- btc_train = pd.concat([btc_train, dummies_one_week, dummies_two_week, dummies_today_week], axis=1)
- pd.options.display.max_rows=10
- btc_train
- btc_ml.cross_val_roc_auc_score()
- RandomForestClassifier score mean: 0.8399573797130188
- array([ 0.815 , 0.8785, 0.8166, 0.8018, 0.8707, 0.8484, 0.8148,
- 0.8551, 0.8005, 0.8981])
AbuML对外的函数都支撑关键子参数fiter_type,可以指定应用的进修器类型如回归,聚类等,每个函数都经由过程内部装潢器声明本身支撑的进修器类型对不支撑的类型输出不支撑,如下想经由过程指定应用回归器进行roc_auc评分:
推荐阅读
瞬息万变的经济情况、难以捉摸的零售业发卖情况、日益冷僻典大年夜型卖场–这一切都给本土零售业带来了重重艰苦。然则,我们也在黑阴郁看到了一线曙光。进入数字时代,技巧和数据的有>>>详细阅读
本文标题:关于机器学习与比特币的示例
地址:http://www.17bianji.com/lsqh/37053.html
1/2 1