膳绫擎的类别将会实例化模型的“基因组”。
如今,我们已经具备了建立一个随便率性收集、变革其架构并对其进行练习的根本构件,那么接下来的步调就是建立“遗传算法”,“遗传算法”将会对最佳个别进行选择和变异。每个模型的练习都是自力进行的,不须要其他有机体的任何信息。这就使得优化过程可以跟着可用的处理节点进行线性扩大。
GP优化器的编码
- """Genetic programming algorithms."""
- from __future__ import absolute_import
- import random
- import numpy as np
- from operator import itemgetter
- import torch.multiprocessing as mp
- from net_builder import randomize_network
- import copy
- from worker import CustomWorker, Scheduler
- class TournamentOptimizer:
- """Define a tournament play selection process."""
- def __init__(self, population_sz, init_fn, mutate_fn, nb_workers=2, use_cuda=True):
- """
- Initialize optimizer.
- params::
- init_fn: initialize a model
- mutate_fn: mutate function - mutates a model
- nb_workers: number of workers
- """
- self.init_fn = init_fn
- self.mutate_fn = mutate_fn
- self.nb_workers = nb_workers
- self.use_cuda = use_cuda
- # population
- self.population_sz = population_sz
- self.population = [init_fn() for i in range(population_sz)]
- self.evaluations = np.zeros(population_sz)
- # book keeping
- self.elite = []
- self.stats = []
- self.history = []
- def step(self):
- """Tournament evolution step."""
- print('\nPopulation sample:')
推荐阅读
吴恩达认为,根本收入筹划的目标不该该是让人们持续给打车公司开车,他欲望根本收入筹划可以或许资世人们进修更多的器械,赞助他们找到有意义的工作。 腾讯科技讯 据外媒报道,固然比来有很>>>详细阅读
本文标题:如何用自动机器学习实现神经网络进化
地址:http://www.17bianji.com/lsqh/36435.html
1/2 1