可以看到在IQ值(解码模型的神经收集构造)雷同的情况下,学渣作弊模式答题(练习收敛速度)更快,而学霸模式答题最慢。
文┞仿[1]中已经提到过,想经由过程学霸模式达到一个好的机能须要模型隐层有4000个节点(学霸的IQ不雅然是高的,有一颗强大年夜的大年夜脑收集)。
可以想想,在教材内允很多很多时,学霸也会累的,并且学弱们你们肯定课上能听懂吗?学渣就会笑啦,因而师长教师给他们画重点了!!!!
本博文中测试的示例代码见【Github地址】:
- # -*- encoding:utf-8 -*-
- “”"
- 测试Encoder-Decoder 2016/03/22
- “”"
- from keras.models import Sequential
- from keras.layers.recurrent import LSTM
- from keras.layers.embeddings import Embedding
- from keras.layers.core import RepeatVector, TimeDistributedDense, Activation
- from seq2seq.layers.decoders import LSTMDecoder, LSTMDecoder2, AttentionDecoder
- import time
- import numpy as np
- import re
- __author__ = ’http://jacoxu.com’
- def pad_sequences(sequences, maxlen=None, dtype=’int32′,
- padding=’pre’, truncating=’pre’, value=http://ai.51cto.com/art/201704/0.):
- ”’Pads each sequence to the same length:
- the length of the longest sequence.
- If maxlen is provided, any sequence longer
- than maxlen is truncated to maxlen.
- Truncation happens off either the beginning (default) or
- the end of the sequence.
- Supports post-padding and pre-padding (default).
- # Arguments
- sequences: list of lists where each element is a sequence
- maxlen: int, maximum length
推荐阅读
如何使用batch-import工具向neo4j中导入海量数据
【引自T_SevenS的博客】在开辟neo4j的过程中,经常会有同窗问若何向neo4j中导入大年夜量的汗青数据,而这些数据一般都邑存在于关系型数据库中,如今本人就根据本身的导入经历,把导入的过>>>详细阅读
本文标题:漫谈四种神经网络序列解码模型以及示例代码
地址:http://www.17bianji.com/lsqh/34942.html
1/2 1